This paper examines the cosmic ray He and C nuclei spectra below ~1 GeV/nuc, as well as the very rapid increase in the He/C ratio below ~100 MeV/nuc, measured by Voyager 1 beyond the heliopause. Using a simple Leaky Box Model (LBM) for galactic propagation we have not been able to simultaneously reproduce the individual He and C nuclei spectra and the large increase in He/C ratio that is observed at low energies. However, using a truncated LBM with different truncation parameters for each nucleus that are related to their rate of energy loss by ionization which is ~Z2/A, these different features can be matched. This suggests that we are observing the effects of the source distribution of cosmic rays in the galaxy on the low energy spectra of cosmic ray nuclei and that there may be a paucity of nearby sources. In this propagation model we start very specific source spectra for He and C which are ~dj/dP = P-2.24, the same for each nucleus and also for all rigidities. These source spectra become spectra with spectral indices ~-2.69 at high rigidities for both charges as a result of a rigidity dependence of the diffusion coefficient governing the propagation which is taken to be ~P-0.45. This exponent is determined directly from the B/C ratio measured by AMS-2. These propagated P-2.69 spectra, when extended to high energies, predict He and C intensities and a He/C ratio that are within +3-5% of the intensities and ratio recently measured by AMS-2 in the energy range from 10 to 1000 GeV/nuc.