Conditional counting statistics of electrons tunneling through quantum dot systems measured by a quantum point contact


الملخص بالإنكليزية

We theoretically study the conditional counting statistics of electron transport through a system consisting of a single quantum dot (SQD) or coherently coupled double quantum dots (DQDs) monitored by a nearby quantum point contact (QPC) using the generating functional approach with the maximum eigenvalue of the evolution equation matrix method, the quantum trajectory theory method (Monte Carlo method), and an efficient method we develop. The conditional current cumulants that are significantly different from their unconditional counterparts can provide additional information and insight into the electron transport properties of mesoscopic nanostructure systems. The efficient method we develop for calculating the conditional counting statistics is numerically stable, and is capable of calculating the conditional counting statistics for a more complex system than the maximum eigenvalue method and for a wider range of parameters than the quantum trajectory method. We apply our method to investigate how the QPC shot noise affects the conditional counting statistics of the SQD system, going beyond the treatment and parameter regime studied in the literature. We also investigate the case when the interdot coherent coupling is comparable to the dephasing rate caused by the back action of the QPC in the DQD system, in which there is considerable discrepancy in the calculated conditional current cumulants between the population rate (master-) equation approach of sequential tunneling and the full quantum master-equation approach of coherent tunneling.

تحميل البحث