Wave thermalization and its implications for nonequilibrium statistical mechanics


الملخص بالإنكليزية

Understanding the rich spatial and temporal structures in nonequilibrium thermal environments is a major subject of statistical mechanics. Because universal laws, based on an ensemble of systems, are mute on an individual system, exploring nonequilibrium statistical mechanics and the ensuing universality in individual systems has long been of fundamental interest. Here, by adopting the wave description of microscopic motion, and combining the recently developed eigenchannel theory and the mathematical tool of the concentration of measure, we show that in a single complex medium, a universal spatial structure - the diffusive steady state - emerges from an overwhelming number of scattering eigenstates of the wave equation. Our findings suggest a new principle, dubbed the wave thermalization, namely, a propagating wave undergoing complex scattering processes can simulate nonequilibrium thermal environments, and exhibit macroscopic nonequilibrium phenomena.

تحميل البحث