Fine-Grained I/O Complexity via Reductions: New lower bounds, faster algorithms, and a time hierarchy


الملخص بالإنكليزية

This paper initiates the study of I/O algorithms (minimizing cache misses) from the perspective of fine-grained complexity (conditional polynomial lower bounds). Specifically, we aim to answer why sparse graph problems are so hard, and why the Longest Common Subsequence problem gets a savings of a factor of the size of cache times the length of a cache line, but no more. We take the reductions and techniques from complexity and fine-grained complexity and apply them to the I/O model to generate new (conditional) lower bounds as well as faster algorithms. We also prove the existence of a time hierarchy for the I/O model, which motivates the fine-grained reductions. Using fine-grained reductions, we give an algorithm for distinguishing 2 vs. 3 diameter and radius that runs in $O(|E|^2/(MB))$ cache misses, which for sparse graphs improves over the previous $O(|V|^2/B)$ running time. We give new reductions from radius and diameter to Wiener index and median. We show meaningful reductions between problems that have linear-time solutions in the RAM model. The reductions use low I/O complexity (typically $O(n/B)$), and thus help to finely capture the relationship between I/O linear time $Theta(n/B)$ and RAM linear time $Theta(n)$. We generate new I/O assumptions based on the difficulty of improving sparse graph problem running times in the I/O model. We create conjectures that the current best known algorithms for Single Source Shortest Paths (SSSP), diameter, and radius are optimal. From these I/O-model assumptions, we show that many of the known reductions in the word-RAM model can naturally extend to hold in the I/O model as well (e.g., a lower bound on the I/O complexity of Longest Common Subsequence that matches the best known running time). Finally, we prove an analog of the Time Hierarchy Theorem in the I/O model.

تحميل البحث