Mixed spin chain compounds, ACuFe2(VO4)3 (A= Li,Na), reach magnetically ordered state at TN ~ 11 K (Li) or ~ 9 K (Na) and experience further transformation of magnetic order at T* ~ 7 K (Li) or ~ 5 K (Na), evidenced in magnetic susceptibility chi and specific heat Cp measurements. While no anomaly has been detected in dielectric property of NaCuFe2(VO4)3, the step-like feature precedes a sharp peak in permittivity epsilon at TN in LiCuFe2(VO4)3. These data suggest the spin-order-induced ferroelectricity in Li compound and no such thing in Na compound. On the contrary, the Moessbauer spectroscopy study suggests similarly wide distribution of hyperfine field in between T* and TN for both the compounds. The first principles calculations also provide similar values for magnetic exchange interaction parameters in both compounds. These observations lead us to conclude on the crucial role of alkali metals mobility within the channels of the crystal structure needed to be considered in explaining the improper multiferroicity in one compound and its absence in other.