Superconductivity at 3.1 K in the orthorhombic ternary silicide ScRuSi


الملخص بالإنكليزية

We report the synthesis, crystal structure, superconductivity and physical property characterizations of the ternary equiatomic compound ScRuSi. Polycrystalline samples of ScRuSi were prepared by an arc-melting method. The as-prepared samples were identified as the orthorhombic Co2P-type o-ScRuSi by the powder X-ray diffraction analysis. Electrical resistivity measurement shows o-ScRuSi to be a metal which superconducts below a Tc of 3.1 K, and the upper critical field {mu}0Hc2(0) is estimated to be 0.87 T. The magnetization and specific heat measurements confirm the bulk type-II superconductivity in o-ScRuSi, with the specific heat jump within the BCS weak coupling limit. o-ScRuSi is the first Co2P-type superconductor containing scandium. After annealing at 1273 K for a week, o-ScRuSi transforms into the hexagonal Fe2P-type h-ScRuSi, and the latter is a Pauli-paramagnetic metal with no superconductivity observed above 1.8 K.

تحميل البحث