Interpolating vector fields for near identity maps and averaging


الملخص بالإنكليزية

For a smooth near identity map, we introduce the notion of an interpolating vector field written in terms of iterates of the map. Our construction is based on Lagrangian interpolation and provides an explicit expressions for autonomous vector fields which approximately interpolate the map. We study properties of the interpolating vector fields and explore their applications to the study of dynamics. In particular, we construct adiabatic invariants for symplectic near identity maps. We also introduce the notion of a Poincare section for a near identity map and use it to visualise dynamics of four dimensional maps. We illustrate our theory with several examples, including the Chirikov standard map and a symplectic map in dimension four, an example motivated by the theory of Arnold diffusion.

تحميل البحث