Asymptotically Efficient Estimation of Smooth Functionals of Covariance Operators


الملخص بالإنكليزية

Let $X$ be a centered Gaussian random variable in a separable Hilbert space ${mathbb H}$ with covariance operator $Sigma.$ We study a problem of estimation of a smooth functional of $Sigma$ based on a sample $X_1,dots ,X_n$ of $n$ independent observations of $X.$ More specifically, we are interested in functionals of the form $langle f(Sigma), Brangle,$ where $f:{mathbb R}mapsto {mathbb R}$ is a smooth function and $B$ is a nuclear operator in ${mathbb H}.$ We prove concentration and normal approximation bounds for plug-in estimator $langle f(hat Sigma),Brangle,$ $hat Sigma:=n^{-1}sum_{j=1}^n X_jotimes X_j$ being the sample covariance based on $X_1,dots, X_n.$ These bounds show that $langle f(hat Sigma),Brangle$ is an asymptotically normal estimator of its expectation ${mathbb E}_{Sigma} langle f(hat Sigma),Brangle$ (rather than of parameter of interest $langle f(Sigma),Brangle$) with a parametric convergence rate $O(n^{-1/2})$ provided that the effective rank ${bf r}(Sigma):= frac{{bf tr}(Sigma)}{|Sigma|}$ (${rm tr}(Sigma)$ being the trace and $|Sigma|$ being the operator norm of $Sigma$) satisfies the assumption ${bf r}(Sigma)=o(n).$ At the same time, we show that the bias of this estimator is typically as large as $frac{{bf r}(Sigma)}{n}$ (which is larger than $n^{-1/2}$ if ${bf r}(Sigma)geq n^{1/2}$). In the case when ${mathbb H}$ is finite-dimensional space of dimension $d=o(n),$ we develop a method of bias reduction and construct an estimator $langle h(hat Sigma),Brangle$ of $langle f(Sigma),Brangle$ that is asymptotically normal with convergence rate $O(n^{-1/2}).$ Moreover, we study asymptotic properties of the risk of this estimator and prove minimax lower bounds for arbitrary estimators showing the asymptotic efficiency of $langle h(hat Sigma),Brangle$ in a semi-parametric sense.

تحميل البحث