Spin - Phonon Coupling in Nickel Oxide Determined from Ultraviolet Raman Spectroscopy


الملخص بالإنكليزية

Nickel oxide (NiO) has been studied extensively for various applications ranging from electrochemistry to solar cells [1,2]. In recent years, NiO attracted much attention as an antiferromagnetic (AF) insulator material for spintronic devices [3-10]. Understanding the spin - phonon coupling in NiO is a key to its functionalization, and enabling AF spintronics promise of ultra-high-speed and low-power dissipation [11,12]. However, despite its status as an exemplary AF insulator and a benchmark material for the study of correlated electron systems, little is known about the spin - phonon interaction, and the associated energy dissipation channel, in NiO. In addition, there is a long-standing controversy over the large discrepancies between the experimental and theoretical values for the electron, phonon, and magnon energies in NiO [13-23]. This gap in knowledge is explained by NiO optical selection rules, high Neel temperature and dominance of the magnon band in the visible Raman spectrum, which precludes a conventional approach for investigating such interaction. Here we show that by using ultraviolet (UV) Raman spectroscopy one can extract the spin - phonon coupling coefficients in NiO. We established that unlike in other materials, the spins of Ni atoms interact more strongly with the longitudinal optical (LO) phonons than with the transverse optical (TO) phonons, and produce opposite effects on the phonon energies. The peculiarities of the spin - phonon coupling are consistent with the trends given by density functional theory calculations. The obtained results shed light on the nature of the spin - phonon coupling in AF insulators and may help in developing innovative spintronic devices.

تحميل البحث