Spectroscopy of $^{50}$Sc and ab initio calculations of $B(M3)$ strengths


الملخص بالإنكليزية

The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states and transitions in $^{50}$Sc following the $beta$-decay of $^{50}$Ca. Branching ratios were determined from the measured $gamma$-ray intensities, and angular correlations of $gamma$ rays have been used to firmly assign the spins of excited states. The presence of an isomeric state that decays by an $M3$ transition with a $B(M3)$ strength of 13.6(7),W.u. has been confirmed. We compare with the first {it ab initio} calculations of $B(M3$) strengths in light and medium-mass nuclei from the valence-space in-medium similarity renormalization group approach, using consistently derived effective Hamiltonians and $M3$ operator. The experimental data are well reproduced for isoscalar $M3$ transitions when using bare $g$-factors, but the strength of isovector $M3$ transitions are found to be underestimated by an order of magnitude.

تحميل البحث