Location-Based Services (LBSs) provide invaluable aid in the everyday activities of many individuals, however they also pose serious threats to the user privacy. There is, therefore, a growing interest in the development of mechanisms to protect location privacy during the use of LBSs. Nowadays, the most popular methods are probabilistic, and the so-called optimal method achieves an optimal trade-off between privacy and utility by using linear optimization techniques. Unfortunately, due to the complexity of linear programming, the method is unfeasible for a large number n of locations, because the constraints are $O(n^3)$. In this paper, we propose a technique to reduce the number of constraints to $O(n^2)$, at the price of renouncing to perfect optimality. We show however that on practical situations the utility loss is quite acceptable, while the gain in performance is significant.