Modeling Finite-Volume Effects and Chiral Symmetry Breaking in Two-Flavor QCD Thermodynamics


الملخص بالإنكليزية

Finite-volume effects in Quantum Chromodynamics (QCD) have been a subject of much theoretical interest for more than two decades. They are in particular important for the analysis and interpretation of QCD simulations on a finite, discrete space-time lattice. Most of these effects are closely related to the phenomenon of spontaneous breaking of the chiral flavor symmetry and the emergence of pions as light Goldstone bosons. These long-range fluctuations are strongly affected by putting the system into a finite box, and an analysis with different methods can be organized according to the interplay between pion mass and box size. The finite volume also affects critical behavior at the chiral phase transition in QCD. In the present review, I will be mainly concerned with modeling such finite volume effects as they affect the thermodynamics of the chiral phase transition for two quark flavors. I review recent work on the analysis of finite-volume effects which makes use of the quark-meson model for dynamical chiral symmetry breaking. To account for the effects of critical long-range fluctuations close to the phase transition, most of the calculations have been performed using non-perturbative Renormalization Group (RG) methods. I give an overview over the application of these methods to a finite volume. The method, the model and the results are put into the context of related work in random matrix theory for very small volumes, chiral perturbation theory for larger volumes, and related methods and approaches. They are applied towards the analysis of finite-volume effects in lattice QCD simulations and their interpretation, mainly in the context of the chiral phase transition for two quark flavors.

تحميل البحث