The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code modules for experiments in stellar astrophysics (MESA), we simulate the long-term evolution of ONe WDs by accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to the mass increase of the WDs. We found that different initial WD masses and mass-accretion rates have influence on the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to the neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.