Model independent inference of the expansion history and implications for the growth of structure


الملخص بالإنكليزية

We model the expansion history of the Universe as a Gaussian Process and find constraints on the dark energy density and its low-redshift evolution using distances inferred from the Luminous Red Galaxy (LRG) and Lyman-alpha (Ly$alpha$) datasets of the Baryon Oscillation Spectroscopic Survey, supernova data from the Joint Light-curve Analysis (JLA) sample, Cosmic Microwave Background (CMB) data from the Planck satellite, and local measurement of the Hubble parameter from the Hubble Space Telescope ($mathsf H0$). Our analysis shows that the CMB, LRG, Ly$alpha$, and JLA data are consistent with each other and with a $Lambda$CDM cosmology, but the ${mathsf H0}$ data is inconsistent at moderate significance. Including the presence of dark radiation does not alleviate the ${mathsf H0}$ tension in our analysis. While some of these results have been noted previously, the strength here lies in that we do not assume a particular cosmological model. We calculate the growth of the gravitational potential in General Relativity corresponding to these general expansion histories and show that they are well-approximated by $Omega_{rm m}^{0.55}$ given the current precision. We assess the prospects for upcoming surveys to measure deviations from $Lambda$CDM using this model-independent approach.

تحميل البحث