Type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of carbon-oxygen white dwarfs. Though the uniformity of their light curves makes them powerful cosmological distance indicators, long-standing issues remain regarding their progenitors and explosion mechanisms. Recent detection of the early ultraviolet pulse of a peculiar subluminous SN Ia has been claimed as new evidence for the companion-ejecta interaction through the single-degenerate channel. Here, we report the discovery of a prominent but red optical flash at $sim$ 0.5 days after the explosion of a SN Ia which shows hybrid features of different SN Ia sub-classes: a light curve typical of normal-brightness SNe Ia, but with strong titanium absorptions, commonly seen in the spectra of subluminous ones. We argue that the early flash of such a hybrid SN Ia is different from predictions of previously suggested scenarios such as the companion-ejecta interaction. Instead it can be naturally explained by a SN explosion triggered by a detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf ($gtrsim$ 1.3 M$_{odot}$) with low-yield $^{56}$Ni or on a sub-Chandrasekhar-mass white dwarf ($sim$ 1.0 M$_{odot}$) merging with a less massive white dwarf. This finding provides compelling evidence that one branch of the previously proposed explosion models, the helium-ignition scenario, does exist in nature, and such a scenario may account for explosions of white dwarfs in a wider mass range in contrast to what was previously supposed.