Asteroid (21) Lutetia: Disk-resolved Photometric Analysis of Baetica Region


الملخص بالإنكليزية

(21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15 to 156.8 degrees. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) taken during the fly-by. We photometrically modeled the region using Minnaert disk-function and Akimov phase function to finally reconstruct a resolved spectral slope map at 5 and 20 degrees of phase angle. We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening. In the next step, we applied the Hapke (2008, 2012) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm), enabling us to compose the normal albedo and Hapke parameter maps for NAC F82+F22. On Baetica, the 649 nm global properties are: geometric albedo of 0.205+-0.005, the average single-scattering albedo of 0.181+-0.005, the average asymmetric factor of -0.342+-0.003, the average shadow-hiding opposition effect amplitude and width respectivelly of 0.824+-0.002 and 0.040+-0.0007, the average roughness slope of 11.45+-3 deg. and the average porosity is 85+-0.2%. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation.

تحميل البحث