On the entropy power inequality for the Renyi entropy of order [0,1]


الملخص بالإنكليزية

Using a sharp version of the reverse Young inequality, and a Renyi entropy comparison result due to Fradelizi, Madiman, and Wang, the authors are able to derive Renyi entropy power inequalities for log-concave random vectors when Renyi parameters belong to $(0,1)$. Furthermore, the estimates are shown to be sharp up to absolute constants.

تحميل البحث