A Weyl semimetal is a new type of topological quantum phase with intriguing physics near the Weyl nodes. Although the equilibrium state of Weyl semimetals has been investigated, the ultrafast dynamics near the Weyl node in the nonequilibrium state is still missing. Here by performing time and angle resolved photoemission spectroscopy on type-II Weyl semimetal MoTe$_2$, we reveal the dispersion of the unoccupied states and identify the Weyl node at 70 meV above E$_F$. Moreover, by tracking the ultrafast relaxation dynamics near the Weyl node upon photo-excitation with energy, momentum and temporal resolution, two intrinsic recovery timescales are observed, a fast one of 430 fs and a slow one of 4.1 ps, which are associated with hot electron cooling by optical phonon cascade emission and anharmonic decay of hot optical phonons respectively. The electron population shows a metallic response, and the two temperature model fitting of the transient electronic temperature gives an electron-phonon coupling constant of $lambdalangleOmega^2ranglesimeq32$ $textrm{meV}^2$. Our work provides important dynamic information for understanding the relaxation mechanism of a Weyl semimetal and for exploiting potential applications using ultrafast optical control.