We show that an intensity speckle can be directly interpreted as the properties of incident light - amplitude, phase, polarization, and coherency over spatial positions. Revisiting the speckle-correlation scattering matrix (SSM) method [Lee and Park, Nat. Comm. 7, 13359 (2016)], we successfully extract the intact information of incident light from an intensity speckle snapshot as the form of coherency matrix. The idea is verified experimentally by introducing the peculiar states of light that exhibit uneven amplitude, phase, polarization, and coherency features. We also find substantial practical advantage of the proposed method compared to the conventional coherency matrix measuring techniques such as Stokes polarimetry. We believe this physical interpretation of an intensity speckle could open a new avenue to study and to utilize the speckle phenomenon in vast subfields of wave physics.