MDS Code Constructions with Small Sub-packetization and Near-optimal Repair Bandwidth


الملخص بالإنكليزية

This paper addresses the problem of constructing MDS codes that enable exact repair of each code block with small repair bandwidth, which refers to the total amount of information flow from the remaining code blocks during the repair process. This problem naturally arises in the context of distributed storage systems as the node repair problem [7]. The constructions of exact-repairable MDS codes with optimal repair-bandwidth require working with large sub-packetization levels, which restricts their employment in practice. This paper presents constructions for MDS codes that simultaneously provide both small repair bandwidth and small sub-packetization level. In particular, this paper presents two general approaches to construct exact-repairable MDS codes that aim at significantly reducing the required sub-packetization level at the cost of slightly sub-optimal repair bandwidth. The first approach gives MDS codes that have repair bandwidth at most twice the optimal repair-bandwidth. Additionally, these codes also have the smallest possible sub-packetization level $ell = O(r)$, where $r$ denotes the number of parity blocks. This approach is then generalized to design codes that have their repair bandwidth approaching the optimal repair-bandwidth at the cost of graceful increment in the required sub-packetization level. The second approach transforms an MDS code with optimal repair-bandwidth and large sub-packetization level into a longer MDS code with small sub-packetization level and near-optimal repair bandwidth. For a given $r$, the obtained codes have their sub-packetization level scaling logarithmically with the code length. In addition, the obtained codes require field size only linear in the code length and ensure load balancing among the intact code blocks in terms of the information downloaded from these blocks during the exact reconstruction of a code block.

تحميل البحث