Data structures for real multiparameter persistence modules


الملخص بالإنكليزية

A theory of modules over posets is developed to define computationally feasible, topologically interpretable data structures, in terms of birth and death of homology classes, for persistent homology with multiple real parameters. To replace the noetherian hypothesis in the general setting of modules over posets, a finitely encoded condition is defined combinatorially and developed algebraically. It captures topological tameness of persistent homology. Poset-modules satisfying it can be specified by fringe presentations that reflect birth-and-death descriptions of persistence. A syzygy theorem characterizes finitely encoded modules as admitting appropriately finite presentations and resolutions. The geometric and algebraic theory focuses on modules over real polyhedral groups (real vector spaces with polyhedral positive cones) and a parallel theory over discrete polyhedral groups (abelian groups with finitely generated positive cones). Existence of primary decomposition is proved over arbitrary polyhedral partially ordered abelian groups, but the real and discrete cases carry enough geometry and, crucially in the real case, topology to induce complete theories of minimal primary and secondary decomposition, associated and attached faces, minimal generators and cogenerators, socles and tops, minimal upset covers and downset hulls, Matlis duality, and minimal fringe presentation. Real semialgebraic properties of data are preserved by functorial constructions. Tops and socles become functorial birth and death spaces for multiparameter persistence modules. They yield functorial QR codes and elder morphisms for modules over real and discrete polyhedral groups that generalize and categorify the bar code and elder rule for persistent homology in one parameter. The disparate ways that QR codes and elder morphisms model bar codes coalesce, in one parameter, to functorial bar codes.

تحميل البحث