Recently, coherent control of the optical response of thin films of matter in standing waves has attracted considerable attention, ranging from applications in excitation-selective spectroscopy and nonlinear optics to demonstrations of all-optical image processing. Here we show that integration of metamaterial and optical fibre technologies allows the use of coherently controlled absorption in a fully fiberized and packaged switching metadevice. With this metadevice, that controls light with light in a nanoscale plasmonic metamaterial film on an optical fibre tip, we provide proof-of-principle demonstrations of logical functions XOR, NOT and AND that are performed within a coherent fully fiberized network at wavelengths between 1530 nm and 1565 nm. The metadevice performance has been tested with optical signals equivalent to a bitrate of up to 40 Gbit/s and sub-milliwatt power levels. Since coherent absorption can operate at the single photon level and also with 100 THz bandwidth, we argue that the demonstrated all-optical switch concept has potential applications in coherent and quantum information networks.