On the Chemical Mixing Induced by Internal Gravity Waves (IGW)


الملخص بالإنكليزية

Detailed modeling of stellar evolution requires a better understanding of the (magneto-)hydrodynamic processes which mix chemical elements and transport angular momentum. Understanding these pro- cesses is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements and asteroseismic data. Here, we use two-dimensional hydrodynamic simula- tions of the generation and propagation of internal gravity waves (IGW) in an intermediate mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parametrization for this diffusion which can be incorporated into stellar evolution codes and tested against observations.

تحميل البحث