Detection of titanium oxide in the atmosphere of a hot Jupiter


الملخص بالإنكليزية

As an exoplanet transits its host star, some of the light from the star is absorbed by the atoms and molecules in the planets atmosphere, causing the planet to seem bigger; plotting the planets observed size as a function of the wavelength of the light produces a transmission spectrum. Measuring the tiny variations in the transmission spectrum, together with atmospheric modelling, then gives clues to the properties of the exoplanets atmosphere. Chemical species composed of light elements$-$such as hydrogen, oxygen, carbon, sodium and potassium$-$have in this way been detected in the atmospheres of several hot giant exoplanets, but molecules composed of heavier elements have thus far proved elusive. Nonetheless, it has been predicted that metal oxides such as titanium oxide (TiO) and vanadium oxide occur in the observable regions of the very hottest exoplanetary atmospheres, causing thermal

تحميل البحث