Vortex, the winding of a vector field in two dimensions, has its core the field singularity and its topological charge defined by the quantized winding angle of the vector field. Vortices are one of the most fundamental topological excitations in nature, widely known in hair whorls as the winding of hair strings, in fluid dynamics as the winding of velocities, in angular-momentum beams as the winding of phase angle and in superconductors and superfluids as the winding of order parameters. Nevertheless, vortices have hardly been observed other than those in the real space. Although band degeneracies, such as Dirac cones, can be viewed as momentum-space vortices in their mathematical structures, there lacks a well-defined physical observable whose winding number is an arbitrary signed integer. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the Brillouin zone (BZ) of periodic plasmonic structures. Using a home-made polarization-resolved momentum-space imaging spectroscopy, we completely map out the dispersion, lifetime and polarization of all radiative states at the visible wavelengths. The momentum space vortices were experimentally identified by their winding patterns in the polarization-resolved iso-frequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scaler fields. This work opens up a promising avenue for exploring topological photonics in the momentum space, studying bound states in continuum (BICs), as well as for rendering and steering vector beams and designing high-Q plasmonic resonances.