We consider a model describing the evolution of a tumor inside a host tissue in terms of the parameters $varphi_p$, $varphi_d$ (proliferating and dead cells, respectively), $u$ (cell velocity) and $n$ (nutrient concentration). The variables $varphi_p$, $varphi_d$ satisfy a Cahn-Hilliard type system with nonzero forcing term (implying that their spatial means are not conserved in time), whereas $u$ obeys a form of the Darcy law and $n$ satisfies a quasistatic diffusion equation. The main novelty of the present work stands in the fact that we are able to consider a configuration potential of singular type implying that the concentration vector $(varphi_p,varphi_d)$ is constrained to remain in the range of physically admissible values. On the other hand, in view of the presence of nonzero forcing terms, this choice gives rise to a number of mathematical difficulties, especially related to the control of the mean values of $varphi_p$ and $varphi_d$. For the resulting mathematical problem, by imposing suitable initial-boundary conditions, our main result concerns the existence of weak solutions in a proper regularity class.