Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films


الملخص بالإنكليزية

We report the observation of the three-dimensional angular dependence of the spin Hall magnetoresistance (SMR) in a bilayer of the epitaxial antiferromagnetic insulator NiO(001) and the heavy metal Pt, without any ferromagnetic element. The detected angular-dependent longitudinal and transverse magnetoresistances are measured by rotating the sample in magnetic fields up to 11 T, along three orthogonal planes (xy-, yz- and xz-rotation planes, where the z-axis is orthogonal to the sample plane). The total magnetoresistance has contributions arising from both the SMR and ordinary magnetoresistance. The onset of the SMR signal occurs between 1 and 3 T and no saturation is visible up to 11 T. The three-dimensional angular dependence of the SMR can be explained by a model considering the reversible field-induced redistribution of magnetostrictive antiferromagnetic S- and T-domains in the NiO(001), stemming from the competition between the Zeeman energy and the elastic clamping effect of the non-magnetic MgO substrate. From the observed SMR ratio, we estimate the spin mixing conductance at the NiO/Pt interface to be greater than $2times10^{14}$ ${Omega}^{-1}$ $m^{-2}$. Our results demonstrate the possibility to electrically detect the Neel vector direction in stable NiO(001) thin films, for rotations in the xy- and xz- planes. Moreover, we show that a careful subtraction of the ordinary magnetoresistance contribution is crucial to correctly estimate the amplitude of the SMR.

تحميل البحث