Continuum limit of hyperon vector coupling $f_1(0)$ from 2+1 flavor domain wall QCD


الملخص بالإنكليزية

We determine the hyperon vector couplings $f_1(0)$ for $Sigma^{-}rightarrow nl^-bar{ u_l}$ and $Xi^0rightarrowSigma^{+}l^-bar{ u_l}$ semileptonic decays in the continuum limit with (2+1)-flavors of dynamical domain-wall fermions, using the Iwasaki gauge action at two different lattice spacings of $a$=0.114(2) and 0.086(2) fm. A theoretical estimation of flavor SU(3)-breaking effect on the vector coupling is required to extract $V_{us}$ from the experimental rate of hyperon beta decays. We obtain the vector couplings $f_1(0)$ for $Sigmarightarrow N$ and $Xirightarrow Sigma$ beta-decays with an accuracy of less than one percent. We then find that lattice results of $f_1(0)$ combined with the best estimate of $|V_{us}|$ with imposing Cabibbo-Kobayashi-Maskawa (CKM) unitarity are slightly deviated from the experimental result of $|V_{us}f_1(0)|$ for the $Sigmarightarrow N$ beta-decay. This discrepancy can be attributed to an assumption made in the experimental analysis on $|V_{us}f_1(0)|$, where the induced second-class form factor $g_2$ is set to be zero regardless of broken SU(3) symmetry. We report on this matter and then estimate the possible value of $g_2(0)$, which is evaluated from the experimental decay rate with our lattice result of $f_1(0)$ under the first-row CKM-unitarity condition.

تحميل البحث