A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
نشر في Behnam Neyshabur
بتاريخ 2017
في مجال الهندسة المعلوماتية
والبحث باللغة
English
تحميل البحث
الملخص بالإنكليزية
We present a generalization bound for feedforward neural networks in terms of the product of the spectral norm of the layers and the Frobenius norm of the weights. The generalization bound is derived using a PAC-Bayes analysis.