The laminated structure of graphene oxide (GO) confers unique interactions with water molecules which may be utilised in a range of applications that require materials with tuneable hygroscopic properties. Precise roles of the expandable interlayer spacing and functional groups in GO laminates are not fully understood till date. Herein, we report experimental and theoretical study on the adsorption and desorption behaviour of water in GO laminates as a function of relative pressure. We have observed that GO imparts excellent water uptake capacity of up to 0.58 gram of water per gram of GO (g g-1), which is much higher than silica gel a conventional desiccant material. More interestingly, the adsorption and desorption kinetics of GO is one order of magnitude higher than silica gel. The observed extraordinary adsorption/desorption rate can be attributed to the high capillary pressure in GO laminates as well as micro meter sized tunnel like wrinkles located at the surface.