Enhanced Raman and photoluminescence response in monolayer MoS$_2$ due to laser healing of defects


الملخص بالإنكليزية

Bound quasiparticles, negatively charged trions and neutral excitons, are associated with the direct optical transitions at the K-points of the Brillouin zone for monolayer MoS$_2$. The change in the carrier concentration, surrounding dielectric constant and defect concentration can modulate the photoluminescence and Raman spectra. Here we show that exposing the monolayer MoS$_2$ in air to a modest laser intensity for a brief period of time enhances simultaneously the photoluminescence (PL) intensity associated with both trions and excitons, together with $sim$ 3 to 5 times increase of the Raman intensity of first and second order modes. The simultaneous increase of PL from trions and excitons cannot be understood based only on known-scenario of depletion of electron concentration in MoS$_2$ by adsorption of O$_2$ and H$_2$O molecules. This is explained by laser induced healing of defect states resulting in reduction of non-radiative Auger processes. This laser healing is corroborated by an observed increase of intensity of both the first order and second order 2LA(M) Raman modes by a factor of $sim$ 3 to 5. The A$_{1g}$ mode hardens by $sim$ 1.4 cm$^{-1}$ whereas the E$^1_{2g}$ mode softens by $sim$ 1 cm$^{-1}$. The second order 2LA(M) Raman mode at $sim$ 440 cm$^{-1}$ shows an increase in wavenumber by $sim$ 8 cm$^{-1}$ with laser exposure. These changes are a combined effect of change in electron concentrations and oxygen-induced lattice displacements.

تحميل البحث