Excitons with a radius of a few lattice constants can be affected by strong central-cell corrections, leading to significant deviations of the optical spectrum from the hydrogen-like Rydberg series, and also to an enhancement of the exciton mass. We present an approach to this situation based on a lattice model that incorporates the effects of a non-parabolic band structure, short distance corrections to the Coulomb interaction between electrons and holes, spin-orbit and exchange coupling. The lattice model allows for observation of the crossover from large radius Wannier to small radius Frenkel excitons without invoking a continuum approximation. We apply the lattice model approach especially to the yellow exciton series in the cuprous oxide, for which the optical spectrum and exciton mass enhancement are obtained through adaptation of only a few model parameters to material-specific values. Our results predict a strongly anisotropic ortho-exciton mass.