Dark Matter and the elusive $mathbf{Z}$ in a dynamical Inverse Seesaw scenario


الملخص بالإنكليزية

The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark matter candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z$-mediated dark matter relic abundance. The collider phenomenology of this elusive $Z$ is also discussed.

تحميل البحث