Quantum Indistinguishability in Chemical Reactions


الملخص بالإنكليزية

Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent and thus well-approximated classically. We explore chemical reactions involving small symmetric molecules, and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a Quantum Dynamical Selection (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally non-symmetric molecular states. As we propose and discuss, the implications of the Quantum Dynamical Selection rule include: (i) a differential chemical reactivity of para- and ortho-hydrogen, (ii) a mechanism for inducing inter-molecular quantum entanglement of nuclear spins, (iii) a new isotope fractionation mechanism, (iv) a novel explanation of the enhanced chemical activity of Reactive Oxygen Species, (v) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, (vi) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.

تحميل البحث