Expected intrinsic volumes and facet numbers of random beta-polytopes


الملخص بالإنكليزية

Let $X_1,ldots,X_n$ be i.i.d. random points in the $d$-dimensional Euclidean space sampled according to one of the following probability densities: $$ f_{d,beta} (x) = text{const} cdot (1-|x|^2)^{beta}, quad |x|leq 1, quad text{(the beta case)} $$ and $$ tilde f_{d,beta} (x) = text{const} cdot (1+|x|^2)^{-beta}, quad xinmathbb{R}^d, quad text{(the beta case).} $$ We compute exactly the expected intrinsic volumes and the expected number of facets of the convex hull of $X_1,ldots,X_n$. Asymptotic formulae where obtained previously by Affentranger [The convex hull of random points with spherically symmetric distributions, 1991]. By studying the limits of the beta case when $betadownarrow -1$, respectively $beta uparrow +infty$, we can also cover the models in which $X_1,ldots,X_n$ are uniformly distributed on the unit sphere or normally distributed, respectively. We obtain similar results for the random polytopes defined as the convex hulls of $pm X_1,ldots,pm X_n$ and $0,X_1,ldots,X_n$. One of the main tools used in the proofs is the Blaschke-Petkantschin formula.

تحميل البحث