Mobility in excess of $10^{6}$ cm$^2$/Vs in InAs quantum wells grown on lattice mismatched InP substrates


الملخص بالإنكليزية

InAs-based two-dimensional electron systems grown on lattice mismatched InP substrates offer a robust platform for the pursuit of topologically protected quantum computing. We investigated strained composite quantum wells of In$_{0.75}$Ga$_{0.25}$As/InAs/In$_{0.75}$Ga$_{0.25}$As with In$_{0.75}$Al$_{0.25}$As barriers. By optimizing the widths of the In$_{0.75}$Ga$_{0.25}$As layers, the In$_{0.75}$Al$_{0.25}$As barrier, and the InAs quantum well we demonstrate mobility in excess of $1 times 10^{6},$cm$^{2}/$Vs. Mobility vs. density data indicates that scattering is dominated by a residual three dimensional distribution of charged impurities. We extract the Rashba parameter and spin-orbit length as important material parameters for investigations involving Majorana zero modes.

تحميل البحث