Cognitive Subscore Trajectory Prediction in Alzheimers Disease


الملخص بالإنكليزية

Accurate diagnosis of Alzheimers Disease (AD) entails clinical evaluation of multiple cognition metrics and biomarkers. Metrics such as the Alzheimers Disease Assessment Scale - Cognitive test (ADAS-cog) comprise multiple subscores that quantify different aspects of a patients cognitive state such as learning, memory, and language production/comprehension. Although computer-aided diagnostic techniques for classification of a patients current disease state exist, they provide little insight into the relationship between changes in brain structure and different aspects of a patients cognitive state that occur over time in AD. We have developed a Convolutional Neural Network architecture that can concurrently predict the trajectories of the 13 subscores comprised by a subjects ADAS-cog examination results from a current minimally preprocessed structural MRI scan up to 36 months from image acquisition time without resorting to manual feature extraction. Mean performance metrics are within range of those of existing techniques that require manual feature selection and are limited to predicting aggregate scores.

تحميل البحث