In this note we prove in the nonlinear setting of $CD(K,infty)$ spaces the stability of the Krasnoselskii spectrum of the Laplace operator $-Delta$ under measured Gromov-Hausdorff convergence, under an additional compactness assumption satisfied, for instance, by sequences of $CD^*(K,N)$ metric measure spaces with uniformly bounded diameter. Additionally, we show that every element $lambda$ in the Krasnoselskii spectrum is indeed an eigenvalue, namely there exists a nontrivial $u$ satisfying the eigenvalue equation $- Delta u = lambda u$.