Improving a solid-state qubit through an engineered mesoscopic environment


الملخص بالإنكليزية

A controlled quantum system can alter its environment by feedback, leading to reduced-entropy states of the environment and to improved system coherence. Here, using a quantum dot electron spin as control and probe, we prepare the quantum dot nuclei under the feedback of coherent population trapping and measure the evolution from a thermal to a reduced-entropy state, with the immediate consequence of extended qubit coherence. Via Ramsey interferometry on the electron spin, we directly access the nuclear distribution following its preparation, and measure the emergence and decay of correlations within the nuclear ensemble. Under optimal feedback, the inhomogeneous dephasing time of the electron, $T_2^*$, is extended by an order of magnitude to $39$~ns. Our results can be readily exploited in quantum information protocols utilizing spin-photon entanglement, and represent a step towards creating quantum many-body states in a mesoscopic nuclear spin ensemble.

تحميل البحث