Magnetar-Powered Supernovae in Two Dimensions. II. Broad-Line Supernovae Ic


الملخص بالإنكليزية

Nascent neutron stars with millisecond periods and magnetic fields in excess of $10^{16}$ Gauss can drive highly energetic and asymmetric explosions known as magnetar-powered supernovae. These exotic explosions are one theoretical interpretation for supernovae Ic-BL which are sometimes associated with long gamma-ray bursts. Twisted magnetic field lines extract the rotational energy of the neutron star and release it as a disk wind or a jet with energies greater than 10$^{52}$ erg over $sim 20$ sec. What fractions of the energy of the central engine go into the wind and the jet remain unclear. We have performed two-dimensional hydrodynamical simulations of magnetar-powered supernovae (SNe) driven by disk winds and jets with the CASTRO code to investigate the effect of the central engine on nucleosynthetic yields, mixing, and light curves. We find that these explosions synthesize less than 0.05 Msun of Ni and that this mass is not very sensitive to central engine type. The morphology of the explosion can provide a powerful diagnostic of the properties of the central engine. In the absence of a circumstellar medium these events are not very luminous, with peak bolometric magnitudes $M_b sim -16.5 $ due to low Ni production.

تحميل البحث