Magnetic order, hysteresis and phase coexistence in magnetoelectric LiCoPO$_4$


الملخص بالإنكليزية

The magnetic phase diagram of magnetoelectric LiCoPO$_4$ is established using neutron diffraction and magnetometry in fields up to 25.9T applied along the crystallographic $b$-axis. For fields greater than 11.9T the magnetic unit cell triples in size with propagation vector Q = (0, 1/3, 0). A magnetized elliptic cycloid is formed with spins in the $(b,c)$-plane and the major axis oriented along $b$. Such a structure allows for the magnetoelectric effect with an electric polarization along $c$ induced by magnetic fields applied along $b$. Intriguingly, additional ordering vectors Q $approx$ (0, 1/4, 0) and Q $approx$ (0, 1/2, 0) appear for increasing fields in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5-21.0T, the propagation vector Q = (0, 1/3, 0) remains but the spins orient differently compared to the cycloid phase. Above 21.0T and up until saturation a commensurate magnetic structure exists with a ferromagnetic component along $b$ and an antiferromagnetic component along $c$.

تحميل البحث