Conflict-free vertex-connections of graphs


الملخص بالإنكليزية

A path in a vertex-colored graph is called emph{conflict free} if there is a color used on exactly one of its vertices. A vertex-colored graph is said to be emph{conflict-free vertex-connected} if any two vertices of the graph are connected by a conflict-free path. This paper investigates the question: For a connected graph $G$, what is the smallest number of colors needed in a vertex-coloring of $G$ in order to make $G$ conflict-free vertex-connected. As a result, we get that the answer is easy for $2$-connected graphs, and very difficult for connected graphs with more cut-vertices, including trees.

تحميل البحث