We present a new analysis of the PG quasar sample based on Spitzer and Herschel observations. (I) Assuming PAH-based star formation luminosities (L_SF) similar to Symeonidis et al. (2016, S16), we find mean and median intrinsic AGN spectral energy distributions (SEDs). These, in the FIR, appear hotter and significantly less luminous than the S16 mean intrinsic AGN SED. The differences are mostly due to our normalization of the individual SEDs, that properly accounts for a small number of very FIR-luminous quasars. Our median, PAH-based SED represents ~ 6% increase on the 1-243 micron luminosity of the extended Mor & Netzer (2012, EM12) torus SED, while S16 find a significantly larger difference. It requires large-scale dust with T ~ 20 -- 30 K which, if optically thin and heated by the AGN, would be outside the host galaxy. (II) We also explore the black hole and stellar mass growths, using L_SF estimates from fitting Herschel/PACS observations after subtracting the EM12 torus contribution. We use rough estimates of stellar mass, based on scaling relations, to divide our sample into groups: on, below and above the star formation main sequence (SFMS). Objects on the SFMS show a strong correlation between star formation luminosity and AGN bolometric luminosity, with a logarithmic slope of ~ 0.7. Finally we derive the relative duty cycles of this and another sample of very luminous AGN at z = 2 -- 3.5. Large differences in this quantity indicate different evolutionary pathways for these two populations characterised by significantly different black hole masses.