The moduli space $mathcal{M}_d$ of degree $dgeq2$ rational maps can naturally be endowed with a measure $mu_mathrm{bif}$ detecting maximal bifurcations, called the bifurcation measure. We prove that the support of the bifurcation measure $mu_mathrm{bif}$ has positive Lebesgue measure. To do so, we establish a general sufficient condition for the conjugacy class of a rational map to belong to the support of $mu_mathrm{bif}$ and we exhibit a large set of Collet-Eckmann rational maps which satisfy this condition. As a consequence, we get a set of Collet-Eckmann rational maps of positive Lebesgue measure which are approximated by hyperbolic rational maps.