Superadditivity of quantum relative entropy for general states


الملخص بالإنكليزية

The property of superadditivity of the quantum relative entropy states that, in a bipartite system $mathcal{H}_{AB}=mathcal{H}_A otimes mathcal{H}_B$, for every density operator $rho_{AB}$ one has $ D( rho_{AB} || sigma_A otimes sigma_B ) ge D( rho_A || sigma_A ) +D( rho_B || sigma_B) $. In this work, we provide an extension of this inequality for arbitrary density operators $ sigma_{AB} $. More specifically, we prove that $ alpha (sigma_{AB})cdot D({rho_{AB}}||{sigma_{AB}}) ge D({rho_A}||{sigma_A})+D({rho_B}||{sigma_B})$ holds for all bipartite states $rho_{AB}$ and $sigma_{AB}$, where $alpha(sigma_{AB})= 1+2 || sigma_A^{-1/2} otimes sigma_B^{-1/2} , sigma_{AB} , sigma_A^{-1/2} otimes sigma_B^{-1/2} - mathbb{1}_{AB} ||_infty$.

تحميل البحث