Superconductor to weak-insulator transitions in disordered Tantalum Nitride films


الملخص بالإنكليزية

We study the two-dimensional superconductor-insulator transition (SIT) in thin films of tantalum nitride. At zero magnetic field, films can be disorder-tuned across the SIT by adjusting thickness and film stoichiometry; insulating films exhibit classical hopping transport. Superconducting films exhibit a magnetic field-tuned SIT, whose insulating ground state at high field appears to be a quantum-corrected metal. Scaling behavior at the field-tuned SIT shows classical percolation critical exponents $z u approx$ 1.3, with a corresponding critical field $H_c ll H_{c2}$. The Hall effect shows a crossing point near $H_c$, but with a non-universal critical value $rho_{xy}^c$ comparable to the normal state Hall resistivity. We propose that high-carrier density metals will always exhibit this pattern of behavior at the boundary between superconducting and (trivially) insulating ground states.

تحميل البحث