Experimental realization of time-dependent phase-modulated continuous dynamical decoupling


الملخص بالإنكليزية

The coherence times achieved with continuous dynamical decoupling techniques are often limited by fluctuations in the driving amplitude. In this work, we use time-dependent phase-modulated continuous driving to increase the robustness against such fluctuations in a dense ensemble of nitrogen-vacancy centers in diamond. Considering realistic experimental errors in the system, we identify the optimal modulation strength, and demonstrate an improvement of an order of magnitude in the spin-preservation of arbitrary states over conventional single continuous driving. The phase-modulated driving exhibits comparable results to previously examined amplitude-modulated techniques, and is expected to outperform them in experimental systems having higher phase accuracy. The proposed technique could open new avenues for quantum information processing and many body physics, in systems dominated by high frequency spin-bath noise, for which pulsed dynamical decoupling is less effective.

تحميل البحث