Using a shallow water model with time-dependent forcing we show that the peak of an exoplanet thermal phase curve is, in general, offset from secondary eclipse when the planet is rotating. That is, the planetary hot-spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset is a function of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady-state in the reference frame of the moving forcing. The model is an extension of the well studied Matsuno-Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planets surface) exceeds that of the gravity waves then the hotspot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wavespeed of the system the hottest point can lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.