Atomic Engineering of Single Photon Sources in 2D Boron Nitride Zai-Quan


الملخص بالإنكليزية

Artificial atomic systems in solids such as single photon emitters are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Here, we report on a controllable way to engineer emitters in two-dimensional (2D) hexagonal boron nitride (hBN) crystals using plasma processing. The method is robust, and yields a 7-fold increase in the density of emitters in hBN, which is promising for their deployment in practical devices. While as-fabricated emitters suffer from blinking and bleaching, a subsequent annealing step yields photo-stable emitters. The presented process is the first step towards controllable placement of quantum emitters in hBN for integrated on-chip quantum nanophotonics based on 2D materials.

تحميل البحث