Low energy magnon dynamics and magneto-optics of the skyrmionic Mott insulator Cu$_2$OSeO$_3$


الملخص بالإنكليزية

In this work, we present a comprehensive study of the low energy optical magnetic response of the skyrmionic Mott insulator Cu$_2$OSeO$_3$ via high resolution time-domain THz spectroscopy. In zero field, a new magnetic excitation not predicted by spin-wave theory with frequency $f$ = 2.03 THz is observed and shown, with accompanying time-of-flight neutron scattering experiments, to be a zone folded magnon from the $mathrm{R}$ to $mathrm{Gamma}$ points of the Brillouin zone. Highly sensitive polarimetry experiments performed in weak magnetic fields, $mu_0$H $<$ 200 mT, observe Faraday and Kerr rotations which are proportional to the sample magnetization, allowing for optical detection of the skyrmion phase and construction of a magnetic phase diagram. From these measurements, we extract a critical exponent of $beta$ = 0.35 $pm$ 0.04, in good agreement with the expected value for the 3D Heisenberg universality class of $beta$ = 0.367. In large magnetic fields, $mu_0$H $>$ 5 T, we observe the magnetically active uniform mode of the ferrimagnetic field polarized phase whose dynamics as a function of field and temperature are studied. In addition to extracting a $g_text{eff}$ = 2.08 $pm$ 0.03, we observe the uniform mode to decay through a non-Gilbert damping mechanism and to possesses a finite spontaneous decay rate, $Gamma_0$ $approx$ 25 GHz, in the zero temperature limit. Our observations are attributed to Dzyaloshinkii-Moriya interactions, which have been proposed to be exceptionally strong in Cu$_2$OSeO$_3$ and are expected to impact the low energy magnetic response of such chiral magnets.

تحميل البحث